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Abstract: - Sparse systems are identified effectively by correntropy induced minimum error entropy (CIM-
MEE) algorithm in the presence of non- Gaussian noise. But this does not take into account the noisy input 
signal. This paper presents a new approach for sparse system identification having input signal corrupted by 
white Gaussian noise. The noisy input signal produces a bias during estimation. The proposed scheme 
incorporates a bias compensator to overcome this bias by adding a constraint in objective function of CIM-
MEE algorithm. Simulations carried out in MATLAB confirm better performance of proposed Biased 
Compensator CIM-MEE (BC-CIM-MEE) algorithm for noisy input signal in the presence of impulsive 
measurement noise.
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1 Introduction 
Most of adaptive algorithms are based on minimum 
mean square error (MSE) criterion due to ease of 
implementation [1]. However, from a statistical 
point of view, MSE only takes into account the 
second order statistics and is therefore only optimal 
in the case of Gaussian signals [2]. But these 
algorithms perform poorly in non -Gaussian 
environment [2].  Several researchers have 
developed adaptive algorithm which are robust 
against non- Gaussian environment [3-5]. Recently 
researches have been done in field of information 
theory for developing the adaptive algorithms which 
perform well in non-Gaussian environment [6-7]. 
Some of criterions are entropy, mutual information 
and dispersion of information [7]. These criterions 
give rise to various learning algorithms supervised 
or unsupervised.  Minimum error entropy (MEE) is 
one such principle in information theoretical 
learning and provides variants of supervised 
learning algorithms [8]. The basic idea of MEE is to 
extract from data as much information as possible 
about the unknown systems by minimizing the 
entropy of error between unknown system output 
and estimated output. This improves the estimation 
performance of system.  In information theory, 
entropies are used to measure average information 
quantitatively.  

In MEE algorithm, the characteristics of system are 
not considered in prior. Hence the performance of 
sparse system identification can be further 
effectively improved by providing the system prior 
information.  Several adaptive algorithms are being 
developed based on least absolutely shrinkage and 
selection operator (LASSO) [9] and latest research 
in Compressive Sensing (CS) [10] which takes in 
account the prior information of system. These 
adaptive filtering algorithms have been developed 
by incorporating a penalty term acquainted with 
information regarding the sparseness of system into 
the objective function of the standard adaptive 
algorithms [11-17].  The most commonly proposed 
sparsity constraints in above sparsity aware adaptive 
algorithms are the l1-norm and reweighted l1-norm, 
which generate a zero-attractor in the iterations of 
filtering algorithms [11-17]. Recently several 
researches are done on correntropy induced metric 
for sparsity constraint. CIM based constraint better 
approximates zero attraction penalty to consider 
system dominant coefficients than l1norm and 
reweighted l1 –norm [3], [18-20]. Zongze Wu 1, 
Siyuan Peng et.al have developed CIM-MEE 
algorithm which perform well when the system is 
sparse [21]. The above algorithm performs well in 
sparse system identification in the presence of 
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impulsive measurement noise but input is 
considered non-noisy. This does not take into 
account the bias caused by noisy input signal. B. 
Kang, J. Yoo, and P. Park have proposed the 
concept of bias compensator to consider the noisy 
input signal. The bias compensator results in an 
unbiased estimation behavior for noisy input signal. 
The proposed BC-CIM-MEE algorithm adds a 
biased compensator in the objective function of 
CIM-MEE algorithm. Simulation confirms that the 
proposed algorithm performs better than CIM-MEE, 
zero attracting MEE (ZA-MEE) algorithms in the 
presence of noisy input. 
The rest of the paper is organized as follows. In 
Section 2, reviews the MEE criterion, and CIM-
MEE algorithm. In Section 3, we derive the 
proposed BC- CIM-MEE algorithms. In Section 4, 
simulation results are carried out to excel the 
performance of the proposed algorithm. Finally, In 
Section 5, conclusion is drawn. 
 

2 Review of Minimum Error Entropy  

Consider x(k), as input to unknown system and 
adaptive filter ,  ̂(k) is coefficient vector of 
adaptive filter we can express output y(k)of the 
adaptive filter as: 

  k)  =  ̂T(k) x(k)                                                 (1)                                                                                        

where x(k) = [x(k) x(k-1) x(k-2) …………x(k-
N+1)]T is input vector with variance   

  and  ̂T(k) is 
estimated coefficient vector of N-dimension and 

d(k) is reference output of unknown system and 
given as: 

d(k)=   
  x(k) + z(k)                                             (2)                                                                                       

where z(k) is measurement noise with zero mean 
and variance   

  and w0 is unknown system 
coefficient vector of M-dimensional which we want 
to estimate. So, we can write the instantaneous 
estimation error e(k) of adaptive filter as                                                          
 

e(k)=d(k)-  (k)                                                      (3) 
 
Let g(e) is probability density function of e(k). So 
Renyi’s entropy of order two of error is given as: 
HR2  = − 𝑙𝑜𝑔 ∫𝑔𝑒

 (𝑒) d𝑒                         (4)  
Since all error samples are not available in 
practically. So we will estimate the value of g(e) 
from available error samples using Parzen window. 
So we can write 
𝑔𝑒 (e) = 1

𝑀
 ∑ 𝑓𝜎 

𝑀
𝑖=1 (e-e(i))         (5) 

Where, M is number of available samples and 𝑓𝜎  is 
kernel function having bandwidth 𝜎. The most 
popular kernel used is Gaussian kernel defined as: 

𝑓𝜎  𝑥) = 1

𝜎√ 𝜋
 𝑒

− 𝑥2

2𝜎2          (6) 
 
So we can write estimated Renyi’s entropy ĤR2

as: 
ĤR2  = − 𝑙𝑜𝑔 ∫𝑔𝑒

 (𝑒) d𝑒 
 = − 𝑙𝑜𝑔 1

𝑀2  ∫[∑ 𝑓𝜎 
𝑀
𝑖=1  e − e i)) ]

  de 

=  − 𝑙𝑜𝑔 1

𝑀2  ∑ ∑ ∫𝑓𝜎  𝑒 − 𝑒 𝑖) 𝑓𝜎  𝑒 −𝑀
𝑗=1

𝑀
𝑖=1

𝑒 𝑗) 𝑑𝑒  
= − 𝑙𝑜𝑔 1

𝑀2  ∑ ∑ 𝑓𝜎√  𝑒 𝑖) − 𝑒 𝑗) 𝑀
𝑗=1

𝑀
𝑖=1 ) 

= −𝑙𝑜𝑔  𝑉 𝑒)             (7) 
 Where V(e) = 1

𝑀2  ∑ ∑ 𝑓𝜎√  𝑒 𝑖) − 𝑒 𝑗) 𝑁
𝑗=1

𝑁
𝑖=1 ), is 

defined as information potential .Thus, it is clear 
that the objective of MEE principle is to minimize 
error entropy which is equivalent to maximizing 
information potential. 
Thus we will maximize V(e). 
Hence objective function of MEE is 
 
𝐺𝑀𝐸𝐸  = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    

𝑤∈𝑹

 V(e)           (8) 

By method of gradient ascent, the weight update 
equation of MEE algorithm becomes: 
�̂�(k+1) = �̂�(k) + 𝜇 ∇ V e k))                               (9)                                                                                            
 ∇ V e) =  

𝜕V e k))

𝜕�̂� 𝑘)
 

= 𝜕

𝜕�̂� 𝑘)
*

1

𝑀2   ∑ ∑ 𝑓𝜎√  𝑒 𝑖) − 𝑒 𝑗) 𝑀
𝑗=1

𝑀
𝑖=1 )+ 

 
=  1

 𝑀2   [∑ ∑ 𝑓𝜎√  𝑒 𝑖) − 𝑒 𝑗) 𝑀
𝑗=1

𝑀
𝑖=1 )(𝑒 𝑖) −

𝑒 𝑗)) 𝑥 𝑖) − 𝑥 𝑗)]                  (10) 
Where 𝑥 𝑖) 𝑎𝑛𝑑 𝑥 𝑗) are inputs to the system at 
time i and j, respectively 
 
2.1 Correntropy Induced Metric MEE (CIM-

MEE) 

The correntropy is a nonlinear measure of the 
similarity between two random variables A=[ 𝑎1, 𝑎2, 
…, 𝑎L] and B = [b1, b2, …, bL] in kernel space 
defined as: 

V(A,B)= E[f𝜎(A,B)]=∫    𝑎  ) 𝑑    (𝑎, b)        (11)     
                                                                                                      
Where     (𝑎, b) is joint distribution function of 
random variable A& B and    is error between 
random variable 𝑎 and b. 

Practically, joint distribution function     (𝑎, b) of 
random variable A& B is unknown for calculating 
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correntropy measure. So estimation of correntropy 
is calculated from finite number of samples of 
random variable defined as: 

V̂(A,B) = 1
 
 ∑         )

 
 =1                                     (12)                                                                                                                                                      

Where M is number of elements of random 
variables A or B. 

The CIM is a nonlinear function defined as: 

CIM(A,B)= √     ) − V̂    ))    and 

CIM2(A,B)=      ) − V̂    ))                            (13)                                                                                                                        

where    ) = 1

√ 𝜋 
   

The CIM constraint leads to a better approximation 
to l0-norm than other previous smoothing 
continuous approximations [3]. CIM based sparsity 
constraint is defined as:                                                   

‖ ‖    CIM2(A,0) =    )
 

  ∑ . −
1

√ 𝜋 
𝑒
 

   
2

2 2/ 
𝑖=1      (14)                                                                                                  

From equation (14), it is clear that  for any 𝑎𝑖   0 
and |𝑎𝑖  |  𝜎 ,the solution reaches very close to l0-
norm for 𝜎  0. Thus CIM provides a good 
approximation to sparsity constraint and can be used 
for development of sparsity aware adaptive 
algorithms for sparse system identification.  

So the objective function of CIM-MEE becomes:  
𝐺𝐶𝐼𝑀 𝑀𝐸𝐸  = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    

�̂�∈𝑹

 (V(e)- 𝛾 CIM2(�̂�,0))        (15)                           

Where 𝛾  is a proportionality constant associated 
with the zero attractor. 
So By gradient ascent method, the weight update 
equation of CIM-MEE becomes: 

�̂�(k+1) = �̂�(k) + [ 𝜇

 𝑀2    ,∑ ∑ 𝑓𝜎1√  𝑒 𝑖) −𝑀
𝑗=1

𝑀
𝑖=1

𝑒 𝑗) )(𝑒 𝑖) − 𝑒 𝑗)) 𝑥 𝑖) − 𝑥 𝑗)- −

𝜌 { 
 ̂ 𝑘)

𝑁√ 𝜋𝜎2
3  𝑒

 
  ̂2 𝑘)

2𝜎2
2
}  ]                                          (16) 

 
 Where  𝜌 = 𝜇𝛾 
 
And  𝜎1 is kernel width of MEE criterion and 𝜎  is 
kernel width of CIM. 
So 𝜎  should be carefully selected so that CIM 
approximate l0-norm appropriately.  
 

 

 

3 Proposed BC-CIM-MEE 

Consider the input signal x(k) is corrupted by white 
noise v(k) as 

u(k)= x(k) +v(k)                                          (17) 
and q(k) = d(k)-  ̂T(k) u(k)                                    
=     

 (k) u(k) + z(k)-  ̂T(k) u(k)                                                                                                                                                                                                                 
=     

 (k) (x(k)+v(k)) + z(k)-  ̂T(k) (x(k) +v(k))      
= (  

 (k) -  ̂T(k)) x(k) + z(k)+   
 (k) -  ̂T(k))v(k)              

=   ̂  𝑘) x(k) + z(k)+  ̂T(k)  v(k)                       
= ep(k) + z(k) +  ̂T(k)  v(k)                         (18) 

Where ep(k) =   ̂  𝑘) x(k) is the priori error.                                                                                                                                                                                                                 

To overcome the effect of bias generated by noisy 
input, the update equation of proposed algorithm 
becomes: 
�̂�(k+1) = �̂�(k) + 0 𝜇

 𝑀2    {∑ ∑ 𝑓𝜎1√  𝑞 𝑖) − 𝑞 𝑗) 𝑀
𝑗=1

𝑀
𝑖=1 )(𝑞 𝑖) −

𝑞 𝑗)) 𝑢 𝑖) − 𝑢 𝑗)} − 𝜌 2 
 ̂ 𝑘)

𝑁√ 𝜋𝜎2
2
 𝑒

 
  ̂2 𝑘)

2𝜎2
2
3  1   + C(k)          (19)    

Where C(k) is bias compensator vector to 
compensate bias produced by noisy input. 
 
Consider weight error vector  �̂� 𝑘) = w0 - �̂�(k) 
So equation (19) becomes: 

 �̂� 𝑘 +  ) =  �̂� 𝑘) - [[ 𝜇

 𝑀2    {∑ ∑ 𝑓𝜎1√  𝑞 𝑖) −𝑀
𝑗=1

𝑀
𝑖=1

𝑞 𝑗) )(𝑞 𝑖) − 𝑞 𝑗)) 𝑢 𝑖) − 𝑢 𝑗)} +

𝜌 { 
 ̂ 𝑘)

𝑁√ 𝜋𝜎2
2
 𝑒

 
  ̂2 𝑘)

2𝜎2
2
}  ]  ] - C(k)                             (20) 

 The term C(k) is related to bias compensator so, the 
third term in equation(20) should not be considered 
in derivation. By omitting third term in right side of 
equation (20), the update equation becomes: 
 �̂� 𝑘 +  ) =  �̂� 𝑘) - * 𝜇

 𝑀2    {∑ ∑ 𝑓𝜎1√  𝑞 𝑖) −𝑀
𝑗=1

𝑀
𝑖=1

𝑞 𝑗) )(𝑞 𝑖) − 𝑞 𝑗)) 𝑢 𝑖) − 𝑢 𝑗)}  +   - C(k)                        (21) 
As   ̂ 𝑘)  approaches w0  in steady state , k ∞  
So   ̂ 𝑘)    
 E[  ̂ 𝑘 +  )| u(k)]= E[  ̂ 𝑘)| u(k)] =0 
E[C(k) | 𝑢 k)] =  - E  
*   ,

𝜇

 𝑀2
∑ ∑ 𝑓𝜎1√  𝑞 𝑖) − 𝑞 𝑗) 𝑀

𝑗=1
𝑀
𝑖=1 )(𝑞 𝑖) −

𝑞 𝑗)) 𝑢 𝑖) − 𝑢 𝑗)-   |  𝑢 k)+                                   (22)      

Using sliding data length of size M, we can write 
equation (22) as: 
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= - E  *   , 𝜇

 𝑀2
∑ ∑ 𝑓𝜎1√ ((𝑒𝑝 𝑖) +   𝑖) +𝑘

𝑗=𝑘 𝑀 1
𝑘
𝑖=𝑘 𝑀 1

   ̂  𝑖)𝑣 𝑖)) − (𝑒𝑝 𝑗) +   𝑗) +   ̂  𝑗)𝑣 𝑗))) (𝑞 𝑖) −

𝑞 𝑗)) 𝑢 𝑖) − 𝑢 𝑗)-   |  𝑢 k)+                                       (23)                                                                                                                     

= - E  * , 𝜇

 𝑀2
∑ ∑ 𝑓𝜎1√ ((𝑒𝑝 𝑖) −𝑘

𝑗=𝑘 𝑀 1
𝑘
𝑖=𝑘 𝑀 1

𝑒𝑝 𝑗) +   𝑖) −   𝑗) +    ̂  𝑖)𝑣 𝑖) −

  ̂  𝑗)𝑣 𝑗)))) (𝑞 𝑖) − 𝑞 𝑗)) 𝑢 𝑖) − 𝑢 𝑗)- |  𝑢 k)+ (24)                                                                                                                                            

We have considered following assumptions for the 
derivation of the bias compensator in the proposed 
algorithm. 

Assumption 1: The measurement noise   𝑘)  is 
considered α-stable distribution noise with zero 
mean and input noise 𝑣 𝑘) is white Gaussian noise 
having zero mean.  

Assumption 2: The signals 𝑣 𝑘)   𝑘) 𝑎𝑛𝑑 𝑥 𝑘)  
and  �̂� 𝑘) are statistically independent.  

Assumption 3: The non-linear function of the 
estimation error f(  𝑘)), v(k) and q(k) are 
statistically independent. 

Taking Taylor series expansion of 𝑓𝜎1√ ((𝑒𝑝 𝑖) −

𝑒𝑝 𝑗) +   𝑖) −   𝑗) +    ̂  𝑖)𝑣 𝑖) −

  ̂  𝑗)𝑣 𝑗))))with respect to *(𝑒𝑝 𝑖) −

𝑒𝑝 𝑗)) + (  ̂  𝑖)𝑣 𝑖) −   ̂  𝑗)𝑣 𝑗))+ 
around  (  𝑖) −   𝑗)) 

We can write as: 

𝑓𝜎1√ ((𝑒𝑝 𝑖) − 𝑒𝑝 𝑗) +   𝑖) −   𝑗) +   �̂�  𝑖)𝑣 𝑖) −

 �̂�  𝑗)𝑣 𝑗)))) =  𝑓𝜎1√  (  𝑖) −   𝑗)) +

𝑓
𝜎1√  
 (  𝑖) −   𝑗)) *(𝑒𝑝 𝑖) − 𝑒𝑝 𝑗)) +

 (  ̂  𝑖)𝑣 𝑖) −   ̂  𝑗)𝑣 𝑗))+  + O (*(𝑒𝑝 𝑖) −

𝑒𝑝 𝑗)) + (  ̂  𝑖)𝑣 𝑖) −   ̂  𝑗)𝑣 𝑗))+
 
)          (25)              

= - E [   { 𝜇

 𝑀2
∑ ∑  ( 𝑓𝜎1√  (  𝑖) −   𝑗)) +𝑘

𝑗=𝑘 𝑀 1
𝑘
𝑖=𝑘 𝑀 1

𝑓
𝜎1√  
 (  𝑖) −   𝑗)) *(𝑒𝑝 𝑖) − 𝑒𝑝 𝑗)) + (   ̂  𝑖)𝑣 𝑖) −

  ̂  𝑗)𝑣 𝑗))+ +    *(𝑒𝑝 𝑖) − 𝑒𝑝 𝑗)) + (  ̂  𝑖)𝑣 𝑖) −

  ̂  𝑗)𝑣 𝑗))+
 
)  𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗)) }   |  𝑢 k)]  (26)                 

   

=  -  𝜇

 𝑀2
∑ ∑   ( 𝑓𝜎1√  (  𝑖) −   𝑗)) 𝑞 𝑖) −𝑘

𝑗=𝑘 𝑀 1
𝑘
𝑖=𝑘 𝑀 1

𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗)) |  𝑢 k))   +    (𝑓
𝜎1√  
 (  𝑖) −

  𝑗)) *(𝑒𝑝 𝑖) − 𝑒𝑝 𝑗)) +

 (  ̂  𝑖)𝑣 𝑖) −   ̂  𝑗)𝑣 𝑗))+  𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) −

𝑢 𝑗)) |  𝑢 k)) + E ( *(𝑒𝑝 𝑖) − 𝑒𝑝 𝑗)) + (  ̂  𝑖)𝑣 𝑖) −

  ̂  𝑗)𝑣 𝑗))+
 
 𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗)) |  𝑢 k))     (27)                       

When k  ∞ ,  𝑒𝑝 𝑘)     and using above 
assumptions, we can write as 

 ( 𝑓𝜎1√  (  𝑖) −   𝑗)) 𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗)) |  𝑢 k))  =
  [𝑓𝜎1√  (  𝑖) −   𝑗))]  [ 𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗))]      (28) 

And,  [ 𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗))] =  *,(𝑒𝑝 𝑖) +   𝑖) +

 �̂�  𝑖)𝑣 𝑖)) − (𝑒𝑝 𝑗) +   𝑗) +  �̂�  𝑗)𝑣 𝑗))-  𝑥 𝑖) + 𝑣 𝑖) −

𝑥 𝑗) − 𝑣 𝑗))+                              (29) 
=  [{(  𝑖) +  �̂�  𝑖)𝑣 𝑖)) − (  𝑗) +   �̂�  𝑗)𝑣 𝑗))} 𝑥 𝑖) +

𝑣 𝑖) − 𝑥 𝑗) − 𝑣 𝑗))]                          (30)         

=  [{(  𝑖) −   𝑗)) + ( �̂�  𝑖)𝑣 𝑖) −  �̂�  𝑗)𝑣 𝑗))} 𝑥 𝑖) +

𝑣 𝑖) − 𝑥 𝑗) − 𝑣 𝑗))]                                                  (31)                         

=   𝜎 
  ( �̂�  𝑖) −  �̂�  𝑗))      

                                           
=  − 𝜎 

  (�̂�  𝑖) − �̂�  𝑗))                                                      (32)                                                                                                              

Where  𝜎 
 =   [𝑣 𝑖)𝑣 𝑖)] 

So    (𝑓
𝜎1√  
 (  𝑖) −   𝑗)) *(𝑒𝑝 𝑖) − 𝑒𝑝 𝑗)) + ( �̂�  𝑖)𝑣 𝑖) −

 �̂�  𝑗)𝑣 𝑗))+  𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗)) |  𝑢 k)) =

   (𝑓
𝜎1√  
 (  𝑖) −   𝑗))[ ( �̂�  𝑖)𝑣 𝑖) −  �̂�  𝑗)𝑣 𝑗))] 𝑞 𝑖) −

𝑞 𝑗))  𝑢 𝑖) − 𝑢 𝑗)) |  𝑢 k))    = 0                                (33)        

And,  

E( *(𝑒𝑝 𝑖) − 𝑒𝑝 𝑗)) +

 (  ̂  𝑖)𝑣 𝑖) −   ̂  𝑗)𝑣 𝑗))+
 
 𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) −

𝑢 𝑗)) |  𝑢 k))   =  E 

( * (  ̂  𝑖)𝑣 𝑖) −   ̂  𝑗)𝑣 𝑗))+
 
  𝑞 𝑖) − 𝑞 𝑗))  𝑢 𝑖) −

𝑢 𝑗)) |  𝑢 k)) =0                                                  (34) 

Combining equation (32), equation (33) and 
equation (34), we can write the value of biased 
compensator as: 

So C(k) =  [ 𝜎 
  𝜇

 𝑀2 ∑ ∑ 𝑓𝜎1√    𝑖) −𝑘
𝑗=𝑘 𝑀 1

𝑘
𝑖=𝑘 𝑀 1

  𝑗))    ̂ 𝑖) −   ̂ 𝑗) ) ]                                         (35)                           

So the update equation of proposed BC-CIM-MEE 
becomes: 

 ̂(k+1) = * ̂ k)  +  𝜎 
  

𝜇

 𝑀2  ∑ ∑ 𝑓𝜎1√    𝑖) −𝑘
𝑗=𝑘 𝑀 1

𝑘
𝑖=𝑘 𝑀 1

  𝑗))    ̂ 𝑖) −   ̂ 𝑗) ) ++ 
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𝜇

 𝑀2
   {∑ ∑ 𝑓𝜎1√  𝑞 𝑖) − 𝑞 𝑗) 𝑘

𝑗=𝑖=𝑘 𝑀 1 
𝑘
𝑖=𝑖=𝑘 𝑀 1 )(𝑞 𝑖) −

𝑞 𝑗)) 𝑢 𝑖) − 𝑢 𝑗)} − 𝜌 2 
 ̂ 𝑘)

𝑁√ 𝜋𝜎2
3  𝑒

 
  ̂2 𝑘)

2𝜎2
2
3                         (36)                         

So the proposed BC-CIM-MEE algorithm provides 
better estimation characteristics in the presence of 
both noisy input and impulsive measurement noise. 
When input signal is not noisy that is input noise 
variance is zero, the proposed algorithm behaves 
like CIM-MEE algorithm. 

Generally the input noise variance is not available, 
so it should be estimated. In past SungEun Jo, and  
Sang Woo Kim have proposed a method to estimate 
input noise variance [23]. 

4 Simulation Results 

In this section we evaluate the performance of 
proposed BC-CIM-MEE algorithm in sparse system 
identification for different sparsity level. We have 
taken the normalized mean square deviation 
(NMSD) error as a criterion to evaluate the 
performance of sparse system identification which 
can be written as: 

NMSD= 10*    1  E *
‖𝑤  �̂� 𝑘) ‖2

‖𝑤 ‖
2 +             (37) 

Both input signal and input noise are considered  
white Gaussian sequence with zero mean. We have 
considered the alpha stable noise as impulsive noise 
for evaluating the performance of the proposed 
algorithm. 
 
The characteristics function of alpha stable noise is 
given as: 

  
g(t)= exp{𝑗𝛿 𝑡) − 𝛾|𝑡|𝛼 [ + 𝑗 𝛽 𝑠𝑔𝑛 𝑡)𝑆 𝑡 𝛼)}       (38)       
          (38) 
Where  

𝑆 𝑡 𝛼) = {
t n (

𝛼𝜋

  
)  𝑖𝑓 𝛼    

 

𝜋
𝑙𝑜𝑔|𝑡| 𝑖𝑓 𝛼 =  

                           (39) 

Where α ∈     ] is the characteristic factor,  𝛽 ∈ (-
1, 1) is the symmetry parameter and − ∞  𝛿  
+∞  is location parameter, 𝛾  0 is dispersion 
parameter. The characteristics factor α measures the 
weight of tail of impulsive noise. It is inversely 
proportional to tail of impulsive noise i.e. larger the 
value of α, smaller the weight of tail of impulsive 
noise. 𝛾 is same as variance as in Gaussian 
distribution. We can define the impulsive noise 

model v(k) as V(𝛼 𝛽 𝛾 𝛿)  We have taken 
measurement noise as  V(           ). 

The Sumulation are averaged over fifty Monte Karle 
runs.We have performed seven experiments to 
evaluate the performance of sparse identification. 
We have taken sytem length N equal to 128. 

In the first experiment, we have examined the 
performance of BC-CIM-MEE  algorithm and have 
compared with MEE, CIM-MEE for different 
sparsity rates.We have taken different  saprsity rates 
, K as 1

  
 ,  1

1 
 and  1

 
  . 

Where sparsity rate, 

 K =  𝑛 𝑚 𝑒  𝑜  𝑛𝑜𝑛  𝑒 𝑜  𝑜𝑒  𝑖 𝑖𝑒𝑛  

 𝑜  𝑙 𝑛 𝑚 𝑒  𝑜   𝑜𝑒  𝑖 𝑖𝑒𝑛  
                     (40) 

Fig.1 Estimation Performance in term of NMSD 

for sparsity level , K = 
 

  
 

Fig.2 Estimation Performance in term of NMSD 

for sparsity level , K = 
 

  
 

Fig.3 Estimation Performance in term of NMSD 

for sparsity level , K = 
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Figures (1), (2) and (3) show that the proposed 
algorithm perform better than MEE and CIM- MEE 
algorithm in every case of sparsity level. 

 In second experiment we investigate the effect of 
step size on the estimation performance of system. 
We have considered µ={0.2 0.5,0.7,0.8 ,1}. From 
Figure 4, it is clear that as step size 
increases,convergence speed increases but   NMSD 
error also increases ,so it  should be chosen 
appropriately to improve the performance of system 
. So we have chosen µ =0.5 in all simulations. 

Fig.4 Effect of step size, µ on the estimation 

performance of proposed algorithm 

In the next experiment we investigate the effect of  
σin  on the estimation performance of system. We 
take the values of  σin  = {0.2 0.4 0.6 0.8 } and all 

other parameters are set same as in previous 
simulation.

Fig.5 Effect of input noise variance,  σin  on the 

estimation performance of proposed algorithm 

From figure 5, it is clear that estimation 
performance of proposed algorithm is consistant to 
value of σin . However, in MEE and CIM-MEE, the 
steady state error increases with increase in the 
value of σin .  

In next simulation, we observe the effect of  MEE 
kernal width σ1 on the estimation performance of the 
system. We have taken σ1 = {1,2 ,3 ,4 ,5 ,6,7}. From 
Figure 6, it is clear that the performance of proposed 
algorithm is varied according to the value of  σ1 . 
However, it shows better performance for  σ1 =2. So 
we have taken  σ1 =2 in all other simulations. 

Fig.6 Effect of  MEE kernal width, σ1  on the 

estimation performance of proposed algorithm 

In next experiment, we examine the effect of  CIM 
kernal width , σ2 on the performance of proposed 
algorithm. As Figure 7 shows that the estimation 
performance of proposed algorithm is varied 
according to σ2. So it must be chosen carefully so 
that it approximates l0-norm. The proposed 
algorithm has lowest NMSD for σ2 = 0.04. So we 
have taken σ2 = 0.04 in all simulations. 

Fig.7 Effect of  σ2  on the estimation performance 

of proposed algorithm 

In the next experiment, we examine the combined  
effect of  step size, µ and  input noise variance, σin 
on the estimation performance of the proposed 
algorithm. We have taken all other parameters same 
as in above experiment. 

 

Fig.8 Combined Effect of  step size, µ and  input 

noise variance, σin on the estimation performance 

of proposed algorithm 

From Figure8, it is clear that when step size, µ and  
input noise variance, σin increase, the steady state 
error (NMSD) increases. For µ =0.5 and  σin = 0.4, 
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the proposed algorithm has  least NMSD error. So 
we have taken µ =0.5 and  σin = 0.4 in simulations. 

In the last, we examine the combined effect of  input 
noise variance, σin and MEE kernal width ,σ1 on the 
estimation performance of system. From figure 9, it 
is clear that proposed algorithm outperforms for σ1 
=2 and σin =0.4. 

 

Fig.9 Combined Effect of  input noise variance, 

σin  and and MEE kernal width ,σ1 on the 

estimation performance of proposed algorithm 

5 Conclusion 

This paper presents BC-CIM-MEE algorithm ,which 
outperforms in the presence of noise input against 
impilsive measurement noise in sparse system 
identification. The proposed algorithm is unbiased 
against noisy input. We also observe the effect of 
step size µ ,  input noise variance σin  ,  MEE kernal 
width σ1 and CIM kernal width σ2  on the estimation 
performance of proposed algorithm. The proposed 
algorithm performs better than MEE and CIM-MEE 
algorithms in all sparsity rates. 
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